MonGOOS-SEAMLESS workshop, 16 Nov 2023 preparation instructions

https://bit.ly/eat-mongoos

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004032.

Stefano Ciavatta, Mercator Ocean international MEAP-TT co-chair SEAMLESS Advisory Board

Mission: improve the operational simulation of indicators related to climate impact, marine food-webs and stakeholders' needs

"Key Facts":

- Horizon H2020 project for Copernicus Service Evolution
- Duration: 2021-2023
- Budget: 1.5M Euro
- Partners: 6 from 6 European countries
- Project coordination: Jozef Skakala, PML
- 10+ investigators are also members of OceanPredict

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004032.

The SEAMLESS project: research streams

- 1. New ensemble generation and data assimilation methods (P Brasseur, UGA)
- 2. Coupled assimilation of physical and biogeochemical data (L Bertino, NERSC)
- 3. Coupled assimilation of remote sensing & in situ biogeochemical data (G Cossarini, OGS)
- 4. Coupled assimilation for joint state-parameter estimation (J Skakala, PML)

Ambition: to make it a free reference tool for teaching, training, research and applications in BGC modelling & DA

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004032.

Being developed further by:

Ensemble and Assimilation Tool

Jorn Bruggeman, Karsten Bolding, Lars Nerger

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement. No 101004032,

Workshop outline

- What is EAT?
- Components underneath
 - GOTM: General Ocean Turbulence Model
 - FABM: Framework for Aquatic Biogeochemical Models
 - PDAF: Parallel Data Assimilation Framework
- Features
- Hands-on exercises

About water column models

- Concept: keep vertical structure, assume horizontal homogeneity
- Realistic enough for many purposes
 - vertical gradients in temperature, light and biogeochemistry,
 - (turbulent) mixing and its response to meteorological forcing
 - pelagic, surface, bottom: air-sea exchange, benthic biogeochemistry, nutrients, plankton, higher trophic levels

• Fast

• simulate 1 year of physics + biogeochemistry in under 1 minute

What is EAT?

"A flexible and extensible software package for data assimilation of physical and biogeochemical variables in a one-dimensional water column"

Key ingredients:

- 1D hydrodynamics (temperature, salinity, mixing) <u>General Ocean Turbulence Model</u>
- A wide range of biogeochemical models <u>Framework for Aquatic Biogeochemical Models</u>
- A wide range of data assimilation algorithms <u>Parallel Data Assimilation Framework</u>
 EAT is a compact codebase (< 5,000 lines) with a Python frontend and a Fortran backend
 Emphasis on usability and flexibility when it comes to installation, file formats, execution

EAT structure

GOTM: General Ocean Turbulence Model

- Visit <u>https://gotm.net</u>
- Approaching 25 years of continuous development
- Highly configurable 1D water column model
 - Key focus was vertical mixing large number of turbulence closure schemes
- Linked to FABM to provide large selection of biogeochemical models (configurable at run-time)
- Configuration via YAML-formatted file
- Very few changes necessary to 'core' GOTM to integrate with EAT
 - New main() calling initialize_gotm(), integrate_gotm(), finalize_gotm() and doing MPI exchange of state vectors with eatpy

GOTM: External Input

- Typically read from files (but can also be constants or analytical)
- Initial conditions for all state variables
 - E.g., temperature, salinity, biogeochemistry
- Air/sea exchange fluxes of heat and momentum
 - u10, v10, t2, airp, humidity, precipitation (not mandatory)
 - ERA5 is a good place to look but many other providers work as well

Live demo

https://bit.ly/igotm-mongoos

FABM: Framework for Aquatic Biogeochemical Models

• Developed since 2009

- supported by EU projects: MEECE, SEAMLESS, NECCTON, OceanICU
- Aims:
 - portability: share one biogeochemical code between different hydrodynamic models (0D, 1D, 2D, 3D)
 - modularity: stand-alone, process-specific biogeochemical modules, combined at run time to create the ecosystem
 - stability: API changes are infrequent and well documented (e.g., upcoming FABM 2.0)
- One library, runs in host with same grid, same domain decomposition
 - FABM does not couple across grids or time steps
 - FABM does not define its own domain decomposition or control parallelization Thus, it does not overlap or compete with MCT, OASIS, ESMF
- Fortran 2003 (Intel, gfortran, Cray, PGI, AMD)
- Open source code + extensive documentation: <u>https://fabm.net</u>

Published

Bruggeman & Bolding (2014) A general framework for aquatic biogeochemical models. *Environmental Modelling & Software* 61, 249–265. <u>10.1016/j.envsoft.2014.04.002</u>

Code releases archived on Zenodo: <u>10.5281/zenodo.3774497</u>

FABM: separation of concerns

FABM: supported physical and biogeochemical models

NECCTON and Ocean-ICU have received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101081273 and 101083922

PDAF: Parallel Data Assimilation Framework

- A unified tool for interdisciplinary data assimilation ...
 - provide support for parallel ensemble forecasts
 - provide assimilation methods (solvers) fully-implemented & parallelized
 - provide tools for observation handling and for diagnostics
 - easily useable with (probably) any numerical model
 - a program library (PDAF-core) plus additional functions
 - run from notebooks to supercomputers (Fortran, MPI & OpenMP)
 - ensure separation of concerns (model DA method observations covariances)
 - First release in 2004 continuous development

Open source: Code, documentation, and tutorial available at

http://pdaf.awi.de

github.com/PDAF/PDAF

PDAFParallel

Data Assimilation

Framework

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118

Assimilation-enabled model using PDAF

PDAF Parallel Data Assimilation Framework

EAT-Coupling of model with PDAF

- Modify model to simulate ensemble of model states
- Insert analysis step/solver to be executed at prescribed interval (EAT: insert MPI communication)
- Run model as usual, but with more processors and additional options

Implementation of analysis step

PDAF Package: DA Methods, Models, etc.

PDAF originated from comparison studies of different filters

Ensemble Filters and smoothers - global and localized

- EnKF (Evensen, 1994 + perturbed obs.)
- (L)ETKF (Bishop et al., 2001/Hunt et al. 2007)
- ESTKF (Nerger et al., 2012)
- NETF (Toedter & Ahrens, 2015)
- Particle filter
- Hybrid LKNETF (Nerger, 2022)
- EnOI mode

Model bindings

- MITgcm NEMO (separate repo)
- AWI-CM / FESOM

Toy models (full implementations with PDAF)

- Lorenz-96 / Lorenz-63
- Lorenz-2005 models II and III

3D-Var schemes

Framework

EAT: installation

• Pre-built conda package for Linux, Mac, Windows

conda create -n eat -c bolding-bruggeman -c conda-forge eatpy

- Build yourself with conda compilers/MPI/NetCDF/BLAS/LAPACK to include custom FABM-based biogeochemistry
- Build yourself with system compilers/MPI/NetCDF/BLAS/LAPACK on HPC systems

more info on wiki

Ensemble generation

You can perturb:

import eatpy

- Physical parameters and forcing (gotm.yaml)
- Biogeochemical parameters (fabm.yaml)
- Initial conditions (restart.nc)

```
import numpy as np
N = 20  # ensemble size
with eatpy.models.gotm.YAMLEnsemble("gotm.yaml", N) as f:
    f["surface/u10/scale_factor"] = np.random.lognormal(sigma=0.1, size=N)
    f["surface/v10/scale_factor"] = np.random.lognormal(sigma=0.1, size=N)
    f["turbulence/turb_param/k_min"] = 3e-6 * np.random.lognormal(sigma=0.1, size=N)
```

Observations: simple text files

depth-dependent (e.g., Argo)

time depth temperature s.d.
2020-05-08 10:12:00 -10.0 15.2 0.1

2020-05-08 10:12:00 -20.0 14.6 0.1

•••

depth-independent (e.g., satellite)

# time	chlorophyll		s.d.	,
2020-05-	-06	12:00:00	0.45	0.31
2020-05-	-11	12:00:00	0.32	0.29

The (augmented) model state

• Starting point: complete model state

- All physical state variables
- All biogeochemical state variables (pelagic and benthic)

• Optionally, select a subset to present to the DA filter

• For instance, "update temperature and salinity only"

Augment the model state to:

- Assimilate observations on physical and biogeochemical diagnostics (for instance, primary production)
- Estimate biogeochemical parameters (scalar)

EAT data assimilation cycle

Plugins

• Typical uses

- Limit the data assimilation update to a subset of the model state
- Transform variables into "Gaussian" space
- Check state validity
- Apply additional constraints to state variable values For instance, to ensure values remain physically meaningful, or to ensure mass conservation
- Specify the background error covariance matrix in variational schemes
- Save ensemble state or custom diagnostics

Suitable for advanced uses

• Reconstruct density increments from forecast/analysis T&S, and from these, calculate nutrient increments (Anna Teruzzi, CMEMS MED MFC)

SST assimilation: example run script

import eatpy

experiment = eatpy.models.GOTM()
filter = eatpy.PDAF(eatpy.pdaf.FilterType.ESTKF)
experiment.add_plugin(eatpy.plugins.select.Select(include=("temp", "salt")))
experiment.add_observations("temp[-1]", "cci_sst.dat")
experiment.run(filter)

SST assimilation: example results

2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09

EAT resources

- Code: <u>https://github.com/BoldingBruggeman/eat</u>
- User guide: https://github.com/BoldingBruggeman/eat/wiki
- **Report** <u>D2.4-v3.pdf</u> with example applications:

Biogeochemical parameter estimation (ERSEM) Jozef Skákala, PML

ARC MFC-like: integrate EAT in custom workflows, e.g., 8d assimilation cycle (ECOSMO) Tsuyoshi Wakamatsu, NERSC

MED MFC-like: 3D-Var with background covariance based on EOFs (BFM) Anna Teruzzi, OGS

Hands-on

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement. No 101004032

Download a GOTM-FABM setup

- Visit <u>https://bit.ly/igotm-mongoos</u>
- Click a location to simulate, then click settings (1)

Latitude:

Depth:

- Customize (2):
 - the time period (recommended: 3 years)
 - biogeochemistry (recommended: PISCES, ERSEM, BFM or ECOSMO)
 - include remotely sensed surface temperature and chlorophyll
- Click download (3)
- Extract the zip file

What's in an iGOTM setup?

gotm.yaml	physics configuration
fabm.yaml	biogeochemistry configuration
grid.dat	vertical grid (relative layer thicknesses)
sprof.dat tprof.dat	temperature and salinity profiles for initialization and relaxation (WOA2018)
<pre>meteo.dat precip.dat ssr.dat</pre>	atmospheric forcing (<u>ERA5</u>)
<pre>ext_press.dat zeta.dat</pre>	tidal forcing (<u>TPXOv9</u>)
nitrate.dat phosphate.dat silicate.dat oxygen.dat TAlk.dat TCO2.dat	biogeochemical profiles for initialization (WOA2018 and GLODAPv2)
cci_sst.dat cci_chl.dat	remotely sensed surface temperature and chlorophyll (SST CCI and OC CCI)

YAML configuration: gotm.yaml

This file was created with only commonly used settings, plus those that differ from the default specified by GOTM. 1 # You can generate a configuration with every possible setting with: gotm --write yaml <OUTFILE> --detail full 2 # To see only the settings that differ from the default, use: gotm --write yaml <OUTFILE> --detail minimal 3 # version of configuration file [default=6] 4 version: 6 title: iGOTM simulation # simulation title used in output [default=GOTM simulation] 5 6 location: # station name used in output [default=GOTM site] 7 name: iGOTM station # latitude [degrees North; min=-90.0; max=90.0; default=0.0] 8 latitude: 5.79381800E+01 # longitude [degrees East; min=-360.0; max=360.0; default=0.0] 9 longitude: 2.52136000E+00 # water depth [m; min=0.0; default=100.0] 10 depth: 70.0 time: 11 # start date and time [yyyy-mm-dd HH:MM:SS; default=2017-01-01 00:00:00] 12 start: 2020-01-01 00:00:00 # stop date and time [vvvv-mm-dd HH:MM:SS; default=2018-01-01 00:00:00] 13 stop: 2022-12-31 18:00:00 # time step for integration [s; min=0.0; default=3600.0] 14 dt: 1800.0 grid: 15 # number of layers [min=1; default=100] 16 nlev: 82 method: file sigma # layer thickness specification [analytical=equal by default with optional zooming 17 ddu: 1.0 # surface zooming [dimensionless; min=0.0; default=0.0] 18 # bottom zooming [dimensionless; min=0.0; default=0.0] ddl: 1.0 19 20 file: grid.dat # path to file with layer thicknesses [default=] # temperature profile used for initialization and optionally relaxation [Celsius] 21 temperature: 22 method: file # method [off, file=from file, constant, two layer=two layers with linear gradient constant value: 0.0 # value to use throughout the simulation [Celsius; default=0.0] 23 file: tprof.dat # path to file with series of profiles [default=] 24 column: 1 # index of column to read from [default=1] 25 26 two layer: # depth where upper layer ends [m; min=0.0; default=0.0] 27 z s: 0.0 t s: 0.0 # upper layer temperature [Celsius; min=0.0; max=40.0; default=0.0] 28 # depth where lower layer begins [m; min=0.0; default=0.0] z b: 0.0 29 # lower layer temperature [Celsius; min=0.0; max=40.0; default=0.0] 30 t b: 0.0 # square of buoyancy frequency [s^-2; min=0.0; default=0.0] NN: 0.0 31 # relax model temperature to observed/prescribed value 32 relax: # time scale for interior layer [s; min=0.0; default=1.0000000E+15] 33 tau: 3.1500000E+07

Using EAT (next slides show example scripts)

- Load the EAT environment whenever you open a new terminal conda activate eat
- Commands will be executed from the directory where you extracted the iGOTM zip file cd <SETUPDIR>
- Run a stand-alone simulation (no ensemble, no data assimilation) eat-gotm
- Generate an ensemble (example generation scripts on next slides) python <GENERATE_SCRIPT>
- Run a data assimilation experiment (example run scripts on next slides) mpiexec -n 1 python <RUN_SCRIPT> \
 - : -n <NENS> eat-gotm [--separate_gotm_yaml] [--separate_restart_file]
- Analyze results:
 - jupyter lab
 - <allow the browser to open, then click one of the Jupyter notebooks: *.ipynb>
- The following slides show example scripts. These are also available <u>here</u>.

Generate the ensemble

```
import numpy as np
import eatpy
N = 20  # ensemble size
gotm = eatpy.models.gotm.YAMLEnsemble("gotm.yaml", N)
fabm = eatpy.models.gotm.YAMLEnsemble("fabm.yaml", N)
with gotm, fabm:
    gotm["surface/u10/scale_factor"] = np.random.lognormal(sigma=0.2, size=N)
    gotm["surface/v10/scale_factor"] = np.random.lognormal(sigma=0.2, size=N)
    gotm["turbulence/turb_param/k_min"] *= np.random.lognormal(sigma=0.2, size=N)
    gotm["fabm/yaml_file"] = fabm.file_paths
    fabm["instances/phy/parameters/mumax0"] *= np.random.lognormal(sigma=0.2, size=N)
    fabm["instances/dia/parameters/mumax0"] *= np.random.lognormal(sigma=0.2, size=N)
```

In the repository: generate_ensemble_phys_bgc.py

Run script: assimilate SST and chlorophyll

import eatpy

```
# Notes:
# * If you are running ERGOM, replace total chlorophyll calculator result with msi ergom1 tot chla
# * A simpler example where only SST is assimilated is given in assimilate sst.pv
experiment = eatpy.models.GOTM(
    diagnostics in state=["total chlorophyll calculator result"]
filter = eatpy.PDAF(eatpy.pdaf.FilterType.ESTKF)
bgc variables = [v for v in experiment.variables if " " in v]
experiment.add plugin(
    eatpy.plugins.select.Select(include=["temp", "salt"] + bgc variables)
experiment.add plugin(eatpy.plugins.check.Finite())
experiment.add plugin(
    eatpy.plugins.transform.Log(
        "total chlorophyll calculator result",
        *bgc variables,
        transform obs=False,
        minimum=1e-12
# If you comment out the two lines below, you run the ensemble only without assimilation
experiment.add_observations("temp[-1]", "cci sst.dat")
experiment.add observations("total chlorophyll calculator result[-1]", "cci chl.dat")
experiment.run(filter)
```

In the repository: assimilate sst chl.py

Run script: estimate BGC parameters

import eatpy

```
# Notes:
# * You can estimate any biogeochemical parameter included in fabm.yaml.
  Check this file to see possible options. The example below is for the PISCES model.
# * If you are running ERGOM, replace total chlorophyll calculator result with msi ergom1 tot chla
experiment = eatpy.models.GOTM(
   diagnostics in state=["total chlorophyll calculator result"],
   fabm parameters in state=["instances/phy/parameters/mumax0", "instances/dia/parameters/mumax0"]
filter = eatpy.PDAF(eatpy.p
                                 But first: make sure parameters are included in output!
par variables = [v for v in
                                           Customize output section in gotm.yaml
experiment.add plugin(
   eatpy.plugins.select.Sel
                              Then, regenerate the ensemble (perturbed gotm.yaml files)
experiment.add plugin(eatpy
experiment.add plugin(
   eatpy.plugins.transform.Log(
        "total chlorophyll calculator result",
        *par variables,
       transform obs=False,
       minimum=1e-12
# If you comment out the two lines below, you run the ensemble only without assimilation
experiment.add observations("temp[-1]", "cci sst.dat")
```

```
experiment.add_observations("total_chlorophyll_calculator_result[-1]", "cci_chl.dat")
```

experiment.run(filter)

In the repository: <u>assimilate_sst_chl_pars.py</u>

More information on the EAT wiki

- Generating ensembles, perturbation approaches
- Specifying observations, file formats
- Filter settings
- Using and writing plugins

If something goes wrong...

- The ensemble collapses (part of the model state becomes identical in all ensemble members)
 - Perturb additional forcing variables and/or parameters, or perturb them more strongly, to ensure spread is sustained throughout the simulation
 - Configure the data assimilation filter to inflate the ensemble (<u>forget</u> <u>parameter</u>)
- The model state becomes corrupted (e.g., NaN)
 - Reduce the model time step (time/dtin gotm.yaml)
 - Ensure the model state stays physically/biogeochemically meaningful by (log)transforming selected variables, or clipping the analysis state to lower/upper bounds

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004032