
MonGOOS-SEAMLESS workshop, 16 Nov 2023
preparation instructions

https://bit.ly/eat-mongoos

https://bit.ly/eat-mongoos

Stefano Ciavatta,
Mercator Ocean international

MEAP-TT co-chair
SEAMLESS Advisory Board

Welcome!

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 101004032.

SEAMLESS Training workshop on
"Biogeochemical Data assimilation with EAT"

National School of management of Tangier, Morocco, 16th November 2023

Mission: improve the operational simulation of indicators related to climate impact, marine food-webs and
stakeholders’ needs

“Key Facts”:
- Horizon H2020 project for Copernicus Service Evolution
- Duration: 2021-2023
- Budget: 1.5M Euro
- Partners: 6 from 6 European countries
- Project coordination: Jozef Skakala, PML

- 10+ investigators are also members of OceanPredict

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 101004032.

The SEAMLESS project: overview

www.seamlessproject.org

http://www.seamlessproject.org/

1. New ensemble generation and data assimilation methods (P Brasseur, UGA)

2. Coupled assimilation of physical and biogeochemical data (L Bertino, NERSC)

3. Coupled assimilation of remote sensing & in situ biogeochemical data (G Cossarini, OGS)

4. Coupled assimilation for joint state-parameter estimation (J Skakala, PML)

The SEAMLESS project: research streams

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 101004032.

SEAMLESS Ensemble Assimilation Tool (EAT)
(J Bruggeman & K Bolding, BB; L Nerger, AWI & al.)

Ambition: to make it a free reference tool for teaching, training, research and applications in BGC modelling & DA

Being developed further by:

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 101004032.

Ensemble and Assimilation Tool
Jorn Bruggeman, Karsten Bolding, Lars Nerger

Workshop outline

• What is EAT?

• Components underneath
• GOTM: General Ocean Turbulence Model

• FABM: Framework for Aquatic Biogeochemical Models

• PDAF: Parallel Data Assimilation Framework

• Features

• Hands-on exercises

About water column models

• Concept: keep vertical structure, assume horizontal homogeneity

• Realistic enough for many purposes
• vertical gradients in temperature, light and biogeochemistry,

• (turbulent) mixing and its response to meteorological forcing

• pelagic, surface, bottom: air-sea exchange, benthic biogeochemistry,
nutrients, plankton, higher trophic levels

• Fast
• simulate 1 year of physics + biogeochemistry in under 1 minute

What is EAT?

“A flexible and extensible software package for data assimilation of physical
and biogeochemical variables in a one-dimensional water column”

Key ingredients:

• 1D hydrodynamics (temperature, salinity, mixing) – General Ocean Turbulence Model

• A wide range of biogeochemical models – Framework for Aquatic Biogeochemical Models

• A wide range of data assimilation algorithms – Parallel Data Assimilation Framework

EAT is a compact codebase (< 5,000 lines) with a Python frontend and a Fortran backend

Emphasis on usability and flexibility when it comes to installation, file formats, execution

EAT structure

mpiexec

user code

EAT + GOTM/FABM/PDAF

3rd party libraries

eatpy (Python)
filter + observations

eat-gotm executable (Fortran)
1D hydrodynamic-biogeochemical model

run script (Python)
filter + observations

filter (Fortran + cython)
data assimilation algorithms

custom plugins
(Python)

GOTM FABM

ERSEM

ECOSMO

BFM

PISCES

…

1 process 1 process per ensemble member

PDAF

BLAS

LAPACK

NetCDFMPI

mpi4py

GOTM: General Ocean Turbulence Model

• Visit https://gotm.net

• Approaching 25 years of continuous development

• Highly configurable 1D water column model
• Key focus was vertical mixing – large number of turbulence closure schemes

• Linked to FABM to provide large selection of biogeochemical models
(configurable at run-time)

• Configuration via YAML-formatted file

• Very few changes necessary to 'core' GOTM to integrate with EAT
• New main() calling initialize_gotm(), integrate_gotm(), finalize_gotm() and

doing MPI exchange of state vectors with eatpy

https://igotm.bolding-bruggeman.com/?key=3IPNXYBB

GOTM: External Input

• Typically read from files (but can also be constants or analytical)

• Initial conditions for all state variables
• E.g., temperature, salinity, biogeochemistry

• Air/sea exchange – fluxes of heat and momentum
• u10, v10, t2, airp, humidity, precipitation (not mandatory)

• ERA5 is a good place to look – but many other providers work as well

Live demo

https://bit.ly/igotm-mongoos

https://bit.ly/igotm-mongoos

FABM: Framework for Aquatic Biogeochemical Models

• Developed since 2009
• supported by EU projects: MEECE, SEAMLESS, NECCTON, OceanICU

• Aims:
• portability: share one biogeochemical code between different hydrodynamic models (0D, 1D, 2D, 3D)

• modularity: stand-alone, process-specific biogeochemical modules, combined at run time to create the ecosystem

• stability: API changes are infrequent and well documented (e.g., upcoming FABM 2.0)

• One library, runs in host with same grid, same domain decomposition
• FABM does not couple across grids or time steps

• FABM does not define its own domain decomposition or control parallelization

Thus, it does not overlap or compete with MCT, OASIS, ESMF

• Fortran 2003 (Intel, gfortran, Cray, PGI, AMD)

• Open source code + extensive documentation: https://fabm.net

• Published
Bruggeman & Bolding (2014) A general framework for aquatic biogeochemical models. Environmental Modelling &
Software 61, 249–265. 10.1016/j.envsoft.2014.04.002

Code releases archived on Zenodo: 10.5281/zenodo.3774497

https://github.com/fabm-model/fabm/wiki/FABM-2.0
https://fabm.net/
http://doi.org/10.1016/j.envsoft.2014.04.002
https://doi.org/10.5281/zenodo.3774497

FABM: separation of concerns

𝜕𝑡𝑐 + 𝜕𝑥 𝑢𝑐 + 𝜕𝑦 𝑣𝑐 + 𝜕𝑧 𝑤𝑐 − 𝜕𝑥 𝐾𝐻𝜕𝑥𝑐 − 𝜕𝑦 𝐾𝐻𝜕𝑦𝑐 − 𝜕𝑧 𝐾𝑉𝜕𝑧𝑐 = −𝜕𝑧 𝑤𝑠𝑐 + 𝑓

ቚ𝐾𝑉𝜕𝑧𝑐
𝑧=0

= 𝐹𝑠, ቚ 𝐾𝑉𝜕𝑧𝑐
𝑧=𝑧𝑏

= 𝐹𝑏

FABM

hydrodynamic model
• memory management
• advection, diffusion, time integration
• input-output
• provide physical quantities density

temperature

salinity

fu
ll

s
p
a
ti
a
l
d
o
m

a
in

lo
c
a
l
p
o
in

t
in

 s
p
a
c
e

biogeochemical models
• define own variables and external dependencies (names, units)
• request parameter values
• given a local environment, provide local source terms, surface/bottom fluxes, vertical velocities

phytoplankton

API

API

zooplankton

API

nutrient

API

detritus

API

pressure

shortwave radiation

bottom stress

wind speed

FABM runs in host
with same grid and
domain
decomposition

https://en.wikipedia.org/wiki/File:Nitrate-3D-vdW.png

FABM: supported physical and biogeochemical models
hydrodynamics

box model

Python

C

R

GOTM

GLM

BROM-tp

MATLAB

GETM

MOM

FVCOM

NEMO

ROMS

ESMF

SCHISM

HYCOM

FESOM-C

HAMSOM

FABM

biogeochemistry

MEDUSA

BSEM

ECOSMO

ERGOM

SELMA

WET/PCLake

NORWECOM

BROM-bio

DEB

seagrass

mizer (fish)

spectral irradiance

MAECS

ERSEM

suspended sediment

ShellSIM

3D

1D

0D

scripts

BFM

PISCES

ecosystem
models

process
models

zooplankton DVM

MOPS

iHAMOCC

BSH-ERGOM

BAMHBI

SEAPODYM-LMTL

FEISTY

UVic

TMM

offline simulator

NECCTON and Ocean-ICU have received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement No 101081273 and 101083922

PDAF: Parallel Data Assimilation Framework

• A unified tool for interdisciplinary data assimilation …

• provide support for parallel ensemble forecasts

• provide assimilation methods (solvers) - fully-implemented & parallelized

• provide tools for observation handling and for diagnostics

• easily useable with (probably) any numerical model

• a program library (PDAF-core) plus additional functions

• run from notebooks to supercomputers (Fortran, MPI & OpenMP)

• ensure separation of concerns (model – DA method – observations – covariances)

• First release in 2004 – continuous development

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118

Open source:
Code, documentation, and tutorial available at

http://pdaf.awi.de

github.com/PDAF/PDAF

Assimilative model(Ensemble) model

Coupling of model with PDAF

▪ Modify model to simulate

ensemble of model states

▪ Insert analysis step/solver to be

executed at prescribed interval

▪ Run model as usual, but with

more processors and additional

options

Analysis
(EnKF)

Assimilation-enabled model using PDAF

EAT-

 (EAT: insert MPI communication)

Forecast 1

Forecast 2

Forecast 40

Observation

... ...

Analysis step in
between time steps

Initialize
ensemble

Ensemble
forecast

Analysis
(EnKF)

Update fields for
next forecast

Assimilation program

MPI communication

Implementation of analysis step
case-specific

call-back routines
(implement for model)

Analysis Step

update ensemble

assimilating observations

Analysis operates
on state vectors Ensemble of

state vectors

X

Initialize obs.

information

y, R

Apply observation

operator

y = H(x)

Model interface

Local

observations

yloc, H(x)loc

Observation module

Initialize

local ensemble

Xloc

Localization

Control vector

transforms

v = B1/2 x

Covariances

EAT:
• State vector setup fully coded

(configurable in Python including
FABM process parameters)

• Observations configured in Python
• Covariance operations in Python
• Currently no localization (1D)

PDAF Package: DA Methods, Models, etc.
PDAF originated from comparison studies of different filters

Ensemble Filters and smoothers - global and localized

▪ EnKF (Evensen, 1994 + perturbed obs.)

▪ (L)ETKF (Bishop et al., 2001/Hunt et al. 2007)

▪ ESTKF (Nerger et al., 2012)

▪ NETF (Toedter & Ahrens, 2015)

▪ Particle filter

▪ Hybrid LKNETF (Nerger, 2022)

▪ EnOI mode

Model bindings

▪ MITgcm NEMO (separate repo)

▪ AWI-CM / FESOM

Toy models (full implementations with PDAF)

▪ Lorenz-96 / Lorenz-63

▪ Lorenz-2005 models II and III

Community:

• pyPDAF (Python-coded models)

• TerrSysMP-PDAF

In progress

• SCHISM/ESMF (VIMS)

3D-Var schemes

(incremental with control variable

transformation)

▪ 3D-Var with parameterized covar.

▪ 3D Ensemble Var

▪ Hybrid 3D-Var
Available

in EAT

EAT: installation

• Pre-built conda package for Linux, Mac, Windows
conda create -n eat -c bolding-bruggeman -c conda-forge eatpy

• Build yourself with conda compilers/MPI/NetCDF/BLAS/LAPACK
to include custom FABM-based biogeochemistry

• Build yourself with system compilers/MPI/NetCDF/BLAS/LAPACK
on HPC systems

more info on wiki

https://github.com/BoldingBruggeman/eat/wiki

Ensemble generation

You can perturb:
• Physical parameters and forcing (gotm.yaml)

• Biogeochemical parameters (fabm.yaml)

• Initial conditions (restart.nc)

import eatpy

import numpy as np

N = 20 # ensemble size

with eatpy.models.gotm.YAMLEnsemble("gotm.yaml", N) as f:

 f["surface/u10/scale_factor"] = np.random.lognormal(sigma=0.1, size=N)

 f["surface/v10/scale_factor"] = np.random.lognormal(sigma=0.1, size=N)

 f["turbulence/turb_param/k_min"] = 3e-6 * np.random.lognormal(sigma=0.1, size=N)

Observations: simple text files

time depth temperature s.d.

2020-05-08 10:12:00 -10.0 15.2 0.1

2020-05-08 10:12:00 -20.0 14.6 0.1

…

time chlorophyll s.d.

2020-05-06 12:00:00 0.45 0.31

2020-05-11 12:00:00 0.32 0.29

…

depth-dependent (e.g., Argo)

depth-independent (e.g., satellite)

The (augmented) model state

• Starting point: complete model state
• All physical state variables

• All biogeochemical state variables (pelagic and benthic)

• Optionally, select a subset to present to the DA filter
• For instance, “update temperature and salinity only”

• Augment the model state to:
• Assimilate observations on physical and biogeochemical diagnostics

(for instance, primary production)

• Estimate biogeochemical parameters (scalar)

EAT data assimilation cycle

eat-gotm
eat-gotm

eatpy.models.GOTM.run eat-gotm

timenext

analysisf ilter

analysis

forecastf ilterobservationsf ilter

timenext

forecastobservations state(timenext)

state(timenext)

observations

time height temperature s.d.
2020-05-08 10:12:00 -10.0 15.2 0.1
2020-05-08 10:12:00 -20.0 14.6 0.1
…

file 1: temperature profiles

time chlorophyll s.d.
2020-05-06 12:00:00 0.45 0.31
2020-05-11 12:00:00 0.32 0.31
…

file 2: surface chlorophyll

custom plugins
select, transform, …

filter: PDAF
EnKF, 3D-Var, …

state(timeprevious)

3. plugin.before_analysis

5. plugin.after_analysis

4. filter.analyze

2a. collect observations

1. get time of next observation

configuration
physics: gotm.yaml

biogeochemistry: fabm.yaml
forcing: *.dat

2b. simulate up to timenext

Plugins

• Typical uses
• Limit the data assimilation update to a subset of the model state

• Transform variables into “Gaussian” space

• Check state validity

• Apply additional constraints to state variable values
For instance, to ensure values remain physically meaningful, or to ensure mass conservation

• Specify the background error covariance matrix in variational schemes

• Save ensemble state or custom diagnostics

• Suitable for advanced uses
• Reconstruct density increments from forecast/analysis T&S, and from these, calculate nutrient

increments (Anna Teruzzi, CMEMS MED MFC)

SST assimilation: example run script

import eatpy

experiment = eatpy.models.GOTM()

filter = eatpy.PDAF(eatpy.pdaf.FilterType.ESTKF)

experiment.add_plugin(eatpy.plugins.select.Select(include=("temp", "salt")))

experiment.add_observations("temp[-1]", "cci_sst.dat")

experiment.run(filter)

SST assimilation: example results

EAT resources

• Code: https://github.com/BoldingBruggeman/eat

• User guide: https://github.com/BoldingBruggeman/eat/wiki

• Report D2.4-v3.pdf with example applications:

MED MFC-like: 3D-Var with background covariance based on EOFs (BFM)
Anna Teruzzi, OGS

ARC MFC-like: integrate EAT in custom workflows, e.g., 8d assimilation cycle (ECOSMO)
Tsuyoshi Wakamatsu, NERSC

Biogeochemical parameter estimation (ERSEM)
Jozef Skákala, PML

https://github.com/BoldingBruggeman/eat
https://github.com/BoldingBruggeman/eat/wiki
https://drive.google.com/file/d/1xAopSrnNIxhfuB__phWc5sw3VM9oCYvP/view?usp=drive_link

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 101004032.

Hands-on

Download a GOTM-FABM setup
• Visit https://bit.ly/igotm-mongoos

• Click a location to simulate, then click settings (1)

• Customize (2):
• the time period

(recommended: 3 years)

• biogeochemistry
(recommended: PISCES,
ERSEM, BFM or ECOSMO)

• include remotely sensed
surface temperature and
chlorophyll

• Click download (3)

• Extract the zip file
1

2

22

2

3

https://bit.ly/igotm-mongoos

What’s in an iGOTM setup?
gotm.yaml physics configuration

fabm.yaml biogeochemistry configuration

grid.dat vertical grid (relative layer thicknesses)

sprof.dat
tprof.dat

temperature and salinity profiles for initialization and relaxation (WOA2018)

meteo.dat
precip.dat
ssr.dat

atmospheric forcing (ERA5)

ext_press.dat
zeta.dat

tidal forcing (TPXOv9)

nitrate.dat
phosphate.dat
silicate.dat
oxygen.dat
TAlk.dat
TCO2.dat

biogeochemical profiles for initialization (WOA2018 and GLODAPv2)

cci_sst.dat
cci_chl.dat

remotely sensed surface temperature and chlorophyll (SST CCI and OC CCI)

https://www.nodc.noaa.gov/OC5/woa18/
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.tpxo.net/global/tpxo9-atlas
https://www.nodc.noaa.gov/OC5/woa18/
https://glodap.info/
https://climate.esa.int/en/projects/sea-surface-temperature/
https://climate.esa.int/en/projects/ocean-colour/

YAML configuration: gotm.yaml

Using EAT (next slides show example scripts)

• Load the EAT environment whenever you open a new terminal
conda activate eat

• Commands will be executed from the directory where you extracted the iGOTM zip file
cd <SETUPDIR>

• Run a stand-alone simulation (no ensemble, no data assimilation)
eat-gotm

• Generate an ensemble (example generation scripts on next slides)
python <GENERATE_SCRIPT>

• Run a data assimilation experiment (example run scripts on next slides)
mpiexec -n 1 python <RUN_SCRIPT> \

: -n <NENS> eat-gotm [--separate_gotm_yaml] [--separate_restart_file]

• Analyze results:
jupyter lab
<allow the browser to open, then click one of the Jupyter notebooks: *.ipynb>

The following slides show example scripts. These are also available here.

https://github.com/BoldingBruggeman/eat-examples/tree/main/north_sea_pisces

Generate the ensemble

import numpy as np
import eatpy
N = 20 # ensemble size

gotm = eatpy.models.gotm.YAMLEnsemble("gotm.yaml", N)
fabm = eatpy.models.gotm.YAMLEnsemble("fabm.yaml", N)
with gotm, fabm:

gotm["surface/u10/scale_factor"] = np.random.lognormal(sigma=0.2, size=N)
gotm["surface/v10/scale_factor"] = np.random.lognormal(sigma=0.2, size=N)
gotm["turbulence/turb_param/k_min"] *= np.random.lognormal(sigma=0.2, size=N)
gotm["fabm/yaml_file"] = fabm.file_paths
fabm["instances/phy/parameters/mumax0"] *= np.random.lognormal(sigma=0.2, size=N)
fabm["instances/dia/parameters/mumax0"] *= np.random.lognormal(sigma=0.2, size=N)

In the repository: generate_ensemble_phys_bgc.py

https://github.com/BoldingBruggeman/eat-examples/blob/main/north_sea_pisces/generate_ensemble_phys_bgc.py

Run script: assimilate SST and chlorophyll
import eatpy

Notes:
* If you are running ERGOM, replace total_chlorophyll_calculator_result with msi_ergom1_tot_chla
* A simpler example where only SST is assimilated is given in assimilate_sst.py

experiment = eatpy.models.GOTM(
diagnostics_in_state=["total_chlorophyll_calculator_result"]

)

filter = eatpy.PDAF(eatpy.pdaf.FilterType.ESTKF)

bgc_variables = [v for v in experiment.variables if "_" in v]
experiment.add_plugin(

eatpy.plugins.select.Select(include=["temp", "salt"] + bgc_variables)
)
experiment.add_plugin(eatpy.plugins.check.Finite())
experiment.add_plugin(

eatpy.plugins.transform.Log(
"total_chlorophyll_calculator_result",
*bgc_variables,
transform_obs=False,
minimum=1e-12

)
)

If you comment out the two lines below, you run the ensemble only without assimilation
experiment.add_observations("temp[-1]", "cci_sst.dat")
experiment.add_observations("total_chlorophyll_calculator_result[-1]", "cci_chl.dat")

experiment.run(filter)

In the repository: assimilate_sst_chl.py

https://github.com/BoldingBruggeman/eat-examples/blob/main/north_sea_pisces/assimilate_sst_chl.py

Run script: estimate BGC parameters
import eatpy

Notes:
* You can estimate any biogeochemical parameter included in fabm.yaml.
Check this file to see possible options. The example below is for the PISCES model.
* If you are running ERGOM, replace total_chlorophyll_calculator_result with msi_ergom1_tot_chla

experiment = eatpy.models.GOTM(
diagnostics_in_state=["total_chlorophyll_calculator_result"],
fabm_parameters_in_state=["instances/phy/parameters/mumax0", "instances/dia/parameters/mumax0"]

)

filter = eatpy.PDAF(eatpy.pdaf.FilterType.ESTKF)

par_variables = [v for v in experiment.variables if v.startswith("instances")]
experiment.add_plugin(

eatpy.plugins.select.Select(include=["temp", "salt", "total_chlorophyll_calculator_result"] + par_variables)
)
experiment.add_plugin(eatpy.plugins.check.Finite())
experiment.add_plugin(

eatpy.plugins.transform.Log(
"total_chlorophyll_calculator_result",
*par_variables,
transform_obs=False,
minimum=1e-12

)
)

If you comment out the two lines below, you run the ensemble only without assimilation
experiment.add_observations("temp[-1]", "cci_sst.dat")
experiment.add_observations("total_chlorophyll_calculator_result[-1]", "cci_chl.dat")

experiment.run(filter)

In the repository: assimilate_sst_chl_pars.py

But first: make sure parameters are included in output!
Customize output section in gotm.yaml

Then, regenerate the ensemble (perturbed gotm.yaml files)

https://github.com/BoldingBruggeman/eat-examples/blob/main/north_sea_pisces/assimilate_sst_chl_pars.py

More information on the EAT wiki

• Generating ensembles, perturbation approaches

• Specifying observations, file formats

• Filter settings

• Using and writing plugins

https://github.com/BoldingBruggeman/eat/wiki
https://github.com/BoldingBruggeman/eat/wiki
https://github.com/BoldingBruggeman/eat/wiki
https://github.com/BoldingBruggeman/eat/wiki

If something goes wrong…

• The ensemble collapses (part of the model state becomes identical
in all ensemble members)

• Perturb additional forcing variables and/or parameters, or perturb them more
strongly, to ensure spread is sustained throughout the simulation

• Configure the data assimilation filter to inflate the ensemble (forget
parameter)

• The model state becomes corrupted (e.g., NaN)
• Reduce the model time step (time/dt in gotm.yaml)

• Ensure the model state stays physically/biogeochemically meaningful by
(log)transforming selected variables, or clipping the analysis state to
lower/upper bounds

https://github.com/BoldingBruggeman/eat/wiki
https://github.com/BoldingBruggeman/eat/wiki

Acknowledgements

www.seamlessproject.org

seamless@pml.ac.uk

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 101004032

http://www.seamless.org/

	Slide 1: MonGOOS-SEAMLESS workshop, 16 Nov 2023 preparation instructions
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Ensemble and Assimilation Tool
	Slide 6: Workshop outline
	Slide 7: About water column models
	Slide 8: What is EAT?
	Slide 9: EAT structure
	Slide 10: GOTM: General Ocean Turbulence Model
	Slide 11: GOTM: External Input
	Slide 12: Live demo
	Slide 13: FABM: Framework for Aquatic Biogeochemical Models
	Slide 14: FABM: separation of concerns
	Slide 15: FABM: supported physical and biogeochemical models
	Slide 16: PDAF: Parallel Data Assimilation Framework
	Slide 17: Assimilation-enabled model using PDAF
	Slide 18: Implementation of analysis step
	Slide 19: PDAF Package: DA Methods, Models, etc.
	Slide 20: EAT: installation
	Slide 21: Ensemble generation
	Slide 22: Observations: simple text files
	Slide 23: The (augmented) model state
	Slide 24: EAT data assimilation cycle
	Slide 25: Plugins
	Slide 26: SST assimilation: example run script
	Slide 27: SST assimilation: example results
	Slide 28: EAT resources
	Slide 29: Hands-on
	Slide 30: Download a GOTM-FABM setup
	Slide 31: What’s in an iGOTM setup?
	Slide 32: YAML configuration: gotm.yaml
	Slide 33: Using EAT (next slides show example scripts)
	Slide 34: Generate the ensemble
	Slide 35: Run script: assimilate SST and chlorophyll
	Slide 36: Run script: estimate BGC parameters
	Slide 37: More information on the EAT wiki
	Slide 38: If something goes wrong…
	Slide 39

