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In the frame of the H2020 SEAMLESS project, ensemble generation methods are being developed with the aim to improve the service through better data assimilation / inversion methods.
A stochastic version of the NEMO-PISCES model has been developed and implemented in a global ocean configuration at 1/4◦ inherited from the CMEMS global Monitoring and Forecasting
Center. The 40-member ensemble represents a probabilistic view of the 2019 seasonal cycle in the global and North Atlantic ocean. This ensemble is used to generate a posterior distribution
of the BGC state variables and associated ecological indicators using a 4D, non Gaussian inversion scheme.

Context / motivations / goals

u H2020 SEAMLESS general objective and motivation : provide
CMEMS with robust modelling/assimilation methods to deliver
useful indicators of climate-change impacts and food security in
marine ecosystems.

u Among the blocking points : Many CMEMS MFC products de-
scribing ocean ecosystems and BGC currently do not include
robust uncertainty estimates.

u IGE team goals : Explore innovative inversion methods to un-
lock pitfalls of CMEMS operational systems, with a focus on
GLO/IBI MFC ”Green Ocean” applications, through:

4 Transition from deterministic to probabilistic ocean BGC mod-
elling based on stochastic parameterizations of uncertainty sources,
and

4 Development of ensemble-based inversion methods dealing with
non Gaussian pdfs to assimilate CMEMS L3 Ocean Colour data.

Methodology

Approach : Decoupling between (i) prior pdf genera-
tion using full-complexity physical/BGC model, and (ii)
Bayesian inversion step (including local anamorphic trans-
formations, Brankart et al., 2012)

(i) Prior pdf : 2019 GLO NEMO-PISCES 40-member ensemble
NEMO-PISCES based on stochastic perturbations, assuming un-
certain bio parameters, mesoscale feature locations and subgrid-
scale processes (Garnier et al., 2016; Leroux et al., 2022).

(ii) Posterior pdf : 4D multivariate regional inver-
sions of L3 CMEMS OC data using LETKF/SEEK
(smoother-like scheme with space-time localization).

Metrics definitions
u Rank histograms: each observation is ranked relatively to its lo-

cation within the sorted ensemble.
u Continuous Rank Probability Score (CRPS): misfit between step-

wise probability distribution of a variable and Heaviside function,
increasing by 1 at the true value of the variable.

CRP S(v) =
∫ +∞

−∞
|F (x) − 1(v − x)|dx

NEMO-PISCES global configuration
u NEMO 4.0-r13720
u 1/4◦ resolution & 75 z-levels
u Initial conditions : MERCATOR GLORYS2V4 (Global Ocean

Eddy-Permitting Physical Reanalysis)
u Forcing : ERA5 dataset (only surface level is used)
u Biogeochemical model PISCES (Aumont et al., 2015):

24 variables
u Initial date = 01.01.2017; spin-up = 2 years; target year = 2019

Stochastic parameterization of uncertainty sources
1. Parameter uncertainties

∂C

∂t
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= SMS (C, u, p · exp [ξ(t)], t)

p′ = p · exp [ξ(t)] ∼ logN (µ = 0, σ = 0.4) ≈ N (µ = 1, σ = 0.4)
Autoregressive processes: ξ(tn+1) = a ξ(tn) + bw + c
αN – photosynthetic efficiency of nanophytoplankton ;
αD – the same for diatoms;
µ0

max – growth rate of nanophytoplankton at 0◦C;
b – temperature sensitivity of phytoplankton growth;
b′

Z – temperature sensitivity of grazing by zoo;
fN

day – day length dependence for nanophytoplankton;
fD

day – the same for diatoms.

2. Unresolved scales
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[
SMS (C + Cξ(t), u, p, t) + SMS (C − Cξ(t), u, p, t)

]
Cξ(t) ≡ δC(t) – fluctuations, not resolved by the mesh.
Stochastic processes ξ(t) with σ = 0.2 are applied to 20 of 24 passive
tracers (except of Dissolved Inorganic Concentration (DIC), Alkalinity,
O2 and CaCO3 concentrations).
3. Location uncertainties

∆xi(t) = ∆x0
i

[
1 + ξi(t)

]
ξi(t + ∆t) = a ξi(t) + b w

a, b define the standard deviation and the correlation length.

4D inversion

u Analysis stage of the Ensemble Kalman Filter (EnKF)

xpos
m = xm + K̂

(
yo − Ĥxm

)
K̂ = P ĤT

(
Ĥ P ĤT + R

)−1

P – ensemble covariance matrix; R – error covariance matrix.
u Anamorphosis transformations x → η ∈ N (0, 1)

Ψ(x) =


η1 , x < x1 ,

ηk + ηk+1−ηk

xk+1−xk
(x − xk) , xk ≤ x ≤ xk+1 ,

ηs , x > xs .

u Domain localization
4 In space : length scale ∼ 40 km in horizontal plane,

no localization in vertical direction;
4 In time : time scale ∼ 10 days.

Surface chlorophyll concentration in PAP region
(1100 km×720 km centered on 16◦30’ W, 48◦50’ N)

Time series and rank histograms

Projection of surface OC on the vertical

CRPS and ensemble variance at 16◦30’ W, 48◦50’ N

Uncertainty reduction for selected indicators

Conclusions...
u A new 4D space-time scheme has been developed as a natural

extension to sequential ensemble analysis/forecast in place today
(such as LETKF) in CMEMS MFCs.

u Controlability of key indicators (POC, NPP, trophic efficiency)
is demonstrated in PAP region, except for specific time peri-
ods. Other results (not shown here) suggest lower performance
in BATS region.

u Accounting of additional (or revising assumptions about the)
uncertainty sources in models and assimilated data is part of the
process.

u The overall approach provides a methodology to help decide
whether to faithfully catalog a new product with objective added
value to users and scientists.

...and perspectives

4 Ongoing : exploration of the skill of the method for
probabilistic forecasts (and associated predictability time
scales).

4 Next step : joint inversion of satellite ocean color and
altimetric data, bringing additional constraints and further
reduction of uncertainties on estimated quantities.

4 Sensitivity to observation error statistics needs further in-
vestigation.


